Embedded Design with IoT - 1 Month Course

Course Title: Embedded Design with IoT
Duration: 1 Month (4 Weeks)
Prerequisites: Basic knowledge of programming and electronics is recommended.
Week 1: Introduction to Embedded Systems and IoT
- Day 1: Introduction to Embedded Systems Overview of embedded systems and their applications in IoT.
- Day 2: Setting Up the Development Environment Installing and configuring tools like Arduino IDE and embedded C compilers.
- Day 3: Basics of Microcontrollers Understanding microcontrollers, GPIOs, and pin configurations.
- Day 4: Introduction to Sensors and Actuators Overview of commonly used sensors (temperature, light) and actuators (motors, relays).
- Day 5: Digital and Analog I/O

Interfacing sensors and actuators with microcontrollers.

- Day 6: Communication Protocols Basics
Introduction to UART, SPI, and I2C communication protocols.
- Day 7: Project: Basic Weather Monitoring System

Build a system to measure temperature and humidity using sensors.

Week 2: IoT Basics and Networking

Day 8: Introduction to IoT
 Understanding IoT architecture and its components.

Day 9: Wireless Communication Basics
 Overview of Wi-Fi, Bluetooth, and Zigbee protocols.

Day 10: Setting Up IoT Modules
 Interfacing ESP8266 or ESP32 modules with microcontrollers.

- Day 11: Cloud Platforms for IoT
 Introduction to IoT platforms like ThingSpeak, Blynk, and AWS IoT.

Day 12: Sending Data to the Cloud
 Writing programs to send sensor data to an IoT platform.

- Day 13: Controlling Devices Remotely

- Day 14: Project: IoT-Based Home Automation
Create a system to control appliances using a smartphone.
Week 3: Advanced IoT Features
- Day 15: Introduction to Real-Time Operating Systems (RTOS)
Basics of RTOS and its role in IoT applications.
- Day 16: Power Management in IoT Devices
Techniques to optimize power consumption for IoT devices.
Day 17: Data Lagging and Starage
- Day 17: Data Logging and Storage
Logging sensor data to SD cards or cloud storage.
- Day 18: Security in IoT
Understanding encryption, authentication, and secure communication protocols.
- Day 19: Edge Computing Basics
Processing data locally on the IoT device before sending it to the cloud.
- Day 20: Integration with Voice Assistants
Connecting IoT devices to platforms like Alexa or Google Assistant.

Build a system to control devices via the cloud or mobile app.

Build a system with motion detection and alert notifications.

Week 4: Final Projects and Deployment
- Day 22: End-to-End IoT System Design
Designing a complete IoT system from sensor to cloud.
- Day 23: Testing and Debugging IoT Systems Tools and techniques for debugging embedded and IoT applications.
- Day 24: Introduction to IoT Analytics
Visualizing and analyzing IoT data on dashboards.
- Day 25: Deployment Strategies for IoT
Deploying IoT solutions in real-world scenarios.
- Day 26: Building a Custom IoT Device
Combine all learned components into a unique IoT device.
- Day 27: Final Project Workday Build and finalize the IoT project for presentation.

- Day 21: Project: IoT-Based Security System

Day 28: Final Project Showcase and Feedback
 Present the final IoT solution and receive feedback for improvement.

Outcome: By the end of this course, participants will understand embedded system design and IoT principles. They will gain hands-on experience in developing IoT-enabled embedded systems, including sensor integration, cloud communication, and device control.